
Workshop on Commodity-Based Visualization Clusters

Parallel Image Compositing API

Byron Alcorn & Randall Frank
HP Workstations & Lawrence Livermore National Labs



2Workshop on Commodity-Based Visualization Clusters

Scalable Visualization Today

“Standard” commodity clusters
– Nodes + GPU + Interconnect
– PowerWalls
– Remote displays

Multiple goals
– Interaction/VR: High frame rates
– PowerWalls: Large pixel counts
– Data scaling: High polygon/fill rates
– Image Quality: Full scene anti-aliasing

Hardware for “compositing” has focused on:
– Application transparency
– Parallel rendering models

Compositing solutions vary considerably:
– sv6, Sepia, SGE, Lightning2
– Many software systems



3Workshop on Commodity-Based Visualization Clusters

An Idealized Visualization Environment
Compute 
Fabric

Storage
Fabric User

Connect

Decompress

Graphics

Graphics

Decompress

4 x 4 Tiled Power Wall

Composition
Fabric

Compositor

Compositor

Compositor

Compositor

Existing
desktop
displays

Existing end user
desktop nodes

Rendering Engines

Virtual Compositor 
• multiple physical 
compositors
• locked down to a 
display

Compositors configurable 
to one or more displays

Compositors discoverable 
from rendering resource

Compositor

Compositor

Compositor

Compositor

Graphics

Graphics

Graphics

Graphics



4Workshop on Commodity-Based Visualization Clusters

Inhibitors to Compositor Adoption

Small market
– Few applications
– No such thing as a “standard” cluster
– No common rendering infrastructure for parallel applications

No common API for compositors
– Application transparent modes are scalability limited
– Invasive/custom interfaces to devices for “special features”

Lack of 2D integration with 3D
Much of the 3D intensive SW was developed for SMP machines 
with limited graphics performance
– Scene graph management
– Preparing data for the rendering pipeline

Hardware limitations exist 
– Capabilities of COTS graphics cards
– Bandwidth available for image fragments



5Workshop on Commodity-Based Visualization Clusters

Parallel Image Compositing API (PICA)

System developers and early 
adopting app developers 
– Mostly HP, PNNL and LLNL 

employees
– Informal API discussions

Goals
– Abstraction for distributed 

image composition
– Provide an open source API 

adoptable by ISVs
– Provides a platform for SW 

implementations
– Target major hardware 

compositors



6Workshop on Commodity-Based Visualization Clusters

A Scalable Rendering Software Stack

Toolkits: “Scene Graphs”, primitive generation
– OpenRM
– VTK
– OpenSG / Open Scene Graph

Chromium: parallel OpenGL API
DMX: distributed X11 / windowing
Merlot: remote image transport interfaces
PICA: “compositor” abstraction

OpenGLX11
DMX PICA

Compositor

Chromium
Merlot

Toolkits
Application



7Workshop on Commodity-Based Visualization Clusters

Underling Assumptions

API targets parallel applications
– Simple parallel model assumptions
– Application can pass messages to itself

API must handle various input sources
– Region of graphics card memory
– Software rendering to main memory
– Must support “windowed” applications

API must provide a complete compositing abstraction
– Abstract the concept of composite “ordering”
– Composting functions covering common usage

Independent of graphics API
Must abstract all current compositor forms
– Multiple compositors available in the same cluster
– DVI based, network based, software, etc 



8Workshop on Commodity-Based Visualization Clusters

Basic PICA Abstractions

Application nodes
– Source of image fragments (ifrag), includes rendering resource
– Application running on every node

Application generates a sequence of “Frames”
– Frames are sequenced by IDs
– Limited queries Supported via frame IDs
– Multiple frame “channels” for stereo

Frames are built from multiple ifrags
– An ifrag is a rectangle of augmented (e.g. α & depth) pixels
– Individual nodes can submit multiple ifrags
– ifrags can be located anywhere in a frame
– ifrags are tagged with an “order” number within each frame

“OpenGL”-style compositing pipeline
– Multiple conceptual “stages” of compositing supported
– The order of ifrag introduction can be application specified 



9Workshop on Commodity-Based Visualization Clusters

Compositing Operation in PICA

C
luster interconnect

Workstation 0

Node 0

gfx

Node 1

gfx

Workstation 1

Node 2

gfx

Node 3

gfx

Workstation 2

Node 4

gfx

Compositor

TeraScale Browser

Nodes
Generate imagery

ifrags
Ordered image fragments

Context
Realization of a compositor

Frame
Output complete images

PICA API wrapper

Windowed application, 
PowerWall, other devices



10Workshop on Commodity-Based Visualization Clusters

Compositing Operation in PICA:Details

C
luster interconnect

Workstation 0

Node 0

gfx

Node 1

gfx

Workstation 1

Node 2

gfx

Node 3

gfx

Workstation 2

Node 4

gfx

TeraScale Browser

Nodes
Generate imagery

ifrags
Ordered image fragments

Context
Realization of a compositor

Frame
Output complete images

PICA API wrapper

Alpha-blending + Z-buffering

Order preserving

Accepts “orders” 0-3

Z-buffering

Non-order preserving
Accepts “order” 4

0

1

2

3

4

4

5

Compositor Stages
Each realizes a “composite” :Inputs 2 ifrags, outputs an ifrag

Scale/Bias→α-testing→Z-buffer→Blending→Logic Ops→Masking

Order #s
“Conceptual” Compositor
Application level abstraction, physical layers 

are free to implement as desired



11Workshop on Commodity-Based Visualization Clusters

Basic PICA Operation

Compositing “context” negotiated (one node)
– Includes compositing pipeline definition
– Hardware is allocated

Context ID is passed to nodes by application
Context is “bound” locally (all nodes) to 
realize the system
Application starts a frame (all nodes)
– Application renders graphics (generates 

ifrags)
– ifrags are passed to local context

Application ends the frame (all nodes)
– Composite may occur asynchronously

Basic query functions allow for application 
feedback

in
iti

al
iz

at
io

n
fra

m
e 

ba
se

d



12Workshop on Commodity-Based Visualization Clusters

Technical Details

Compositing happens at the application rate, not at the display rate
Designed to support 99% of applications

– Sorted, alpha blending (e.g. volume rendering)
– Tiling
– “Overlays” (e.g. annotations, heads-up-displays)

Advanced composites supported as well
– Anti-aliasing
– HW assisted “transparency”

Provides mechanisms for application “hinting”
– Performance optimizations (e.g. BSP composite trees)
– “Specialized” features (e.g. incomplete crossbars)

Compositing API mostly independent of graphics API
– Some calls restricted (glXSwapBuffer, glXCreateContext)
– Special “window manager” specific create context calls



13Workshop on Commodity-Based Visualization Clusters

Current Status

First revision of the specification is complete
– Written as a communication tool
– “Human readable” specification next

Development efforts
– “C” Stubs written for the API
– Compiles both apps and compositor
– Tiered shared library dispatch done
– Simple software compositor under development
– Test application under development

Continued investigations/discussions
– Mapping to various hardware systems
– Application transparency issues
– Parallel system model and security issues



14Workshop on Commodity-Based Visualization Clusters

Future Steps

Work out additional high level technical details
– Opportunities for performance optimizations
– Node allocation issues (e.g. multiple graphics pipelines in a node)
– How to choose a compositor

Work out next level of details
– Sample application
– Partial compositor

Create sample implementation
Write drivers to support a HW compositor
Get API feedback from a wider audience
– Researchers
– Application writers
– HW providers



Workshop on Commodity-Based Visualization Clusters

UCRL-PRES-150111

The LLNL work was performed under the auspices of the U.S. Department of Energy by the University of California, 
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 


